117 research outputs found

    QTL associated with resistance to cassava brown streak and cassava mosaic diseases in a bi-parental cross of two Tanzanian farmer varieties, Namikonga and Albert

    Get PDF
    Article purchasedCassava production in Africa is compromised by cassava brown streak disease (CBSD) and cassava mosaic disease (CMD). To reduce costs and increase the precision of resistance breeding, a QTL study was conducted to identify molecular markers linked to resistance against these diseases. A bi-parental F1 mapping population was developed from a cross between the Tanzanian farmer varieties, Namikonga and Albert. A one-step genetic linkage map comprising 943 SNP markers and 18 linkage groups spanning 1776.2 cM was generated. Phenotypic data from 240 F1 progeny were obtained from two disease hotspots in Tanzania, over two successive seasons, 2013 and 2014. Two consistent QTLs linked to resistance to CBSD-induced root necrosis were identified in Namikonga on chromosomes II (qCBSDRNFc2Nm) and XI (qCBSDRNc11Nm) and a putative QTL on chromosome XVIII (qCBSDRNc18Nm). qCBSDRNFc2Nm was identified at Naliendele in both seasons. The same QTL was also associated with CBSD foliar resistance. qCBSDRNc11Nm was identified at Chambezi in both seasons, and was characterized by three peaks, spanning a distance of 253 kb. Twenty-seven genes were identified within this region including two LRR proteins and a signal recognition particle. In addition, two highly significant CMD resistance QTL (qCMDc12.1A and qCMDc12.2A) were detected in Albert, on chromosome 12. Both qCMDc12.1A and qCMDc12.2A lay within the range of markers reported earlier, defining the CMD2 locus. This is the first time that two loci have been identified within the CMD2 QTL, and in germplasm of apparent East African origin. Additional QTLs with minor effects on CBSD and CMD resistance were also identified

    Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using <it>in silico </it>simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence.</p> <p>Results</p> <p>The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on <it>Arabidopsis</it>. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most.</p> <p>Conclusions</p> <p>BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.</p

    Evaluation of Methods for De Novo Genome Assembly from High-Throughput Sequencing Reads Reveals Dependencies That Affect the Quality of the Results

    Get PDF
    Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger numbers of usable sequences per instrument-run continue to make whole-genome assembly an appealing target application. In this paper we evaluate the feasibility of de novo genome assembly from short reads (≤100 nucleotides) through a detailed study involving genomic sequences of various lengths and origin, in conjunction with several of the currently popular assembly programs. Our extensive analysis demonstrates that, in addition to sequencing coverage, attributes such as the architecture of the target genome, the identity of the used assembly program, the average read length and the observed sequencing error rates are powerful variables that affect the best achievable assembly of the target sequence in terms of size and correctness

    Candidate genes for field resistance to cassava brown streak disease revealed through the analysis of multiple data sources

    Get PDF
    Open Access JournalCassava (Manihot esculenta Crantz) is a food and industrial storage root crop with substantial potential to contribute to managing risk associated with climate change due to its inherent resilience and in providing a biodegradable option in manufacturing. In Africa, cassava production is challenged by two viral diseases, cassava brown streak disease (CBSD) and cassava mosaic disease. Here we detect quantitative trait loci (QTL) associated with CBSD in a biparental mapping population of a Tanzanian landrace, Nachinyaya and AR37-80, phenotyped in two locations over three years. The purpose was to use the information to ultimately facilitate either marker-assisted selection or adjust weightings in genomic selection to increase the efficiency of breeding. Results from this study were considered in relation to those from four other biparental populations, of similar genetic backgrounds, that were phenotyped and genotyped simultaneously. Further, we investigated the co-localization of QTL for CBSD resistance across populations and the genetic relationships of parents based on whole genome sequence information. Two QTL on chromosome 4 for resistance to CBSD foliar symptoms and one on each of chromosomes 11 and 18 for root necrosis were of interest. Of significance within the candidate genes underlying the QTL on chromosome 4 are Phenylalanine ammonia-lyase (PAL) and Cinnamoyl-CoA reductase (CCR) genes and three PEPR1-related kinases associated with the lignin pathway. In addition, a CCR gene was also underlying the root necrosis-resistant QTL on chromosome 11. Upregulation of key genes in the cassava lignification pathway from an earlier transcriptome study, including PAL and CCR, in a CBSD-resistant landrace compared to a susceptible landrace suggests a higher level of basal lignin deposition in the CBSD-resistant landrace. Earlier RNAscope® in situ hybridisation imaging experiments demonstrate that cassava brown streak virus (CBSV) is restricted to phloem vessels in CBSV-resistant varieties, and phloem unloading for replication in mesophyll cells is prevented. The results provide evidence for the involvement of the lignin pathway. In addition, five eukaryotic initiation factor (eIF) genes associated with plant virus resistance were found within the priority QTL regions

    Sequencing of BAC pools by different next generation sequencing platforms and strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs) improve the assemblies by scaffolding and whether barcoding of BACs is dispensable.</p> <p>Results</p> <p>Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library.</p> <p>Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%.</p> <p>Conclusion</p> <p>Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.</p

    The Cassava Genome: Current Progress, Future Directions

    Get PDF
    The starchy swollen roots of cassava provide an essential food source for nearly a billion people, as well as possibilities for bioenergy, yet improvements to nutritional content and resistance to threatening diseases are currently impeded. A 454-based whole genome shotgun sequence has been assembled, which covers 69% of the predicted genome size and 96% of protein-coding gene space, with genome finishing underway. The predicted 30,666 genes and 3,485 alternate splice forms are supported by 1.4 M expressed sequence tags (ESTs). Maps based on simple sequence repeat (SSR)-, and EST-derived single nucleotide polymorphisms (SNPs) already exist. Thanks to the genome sequence, a high-density linkage map is currently being developed from a cross between two diverse cassava cultivars: one susceptible to cassava brown streak disease; the other resistant. An efficient genotyping-by-sequencing (GBS) approach is being developed to catalog SNPs both within the mapping population and among diverse African farmer-preferred varieties of cassava. These resources will accelerate marker-assisted breeding programs, allowing improvements in disease-resistance and nutrition, and will help us understand the genetic basis for disease resistance

    454 sequencing of pooled BAC clones on chromosome 3H of barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp). Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H.</p> <p>Results</p> <p>We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1.</p> <p>Conclusions</p> <p>We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.</p

    Impact of index hopping and bias towards the reference allele on accuracy of genotype calls from low-coverage sequencing

    Get PDF
    Abstract Background Inherent sources of error and bias that affect the quality of sequence data include index hopping and bias towards the reference allele. The impact of these artefacts is likely greater for low-coverage data than for high-coverage data because low-coverage data has scant information and many standard tools for processing sequence data were designed for high-coverage data. With the proliferation of cost-effective low-coverage sequencing, there is a need to understand the impact of these errors and bias on resulting genotype calls from low-coverage sequencing. Results We used a dataset of 26 pigs sequenced both at 2× with multiplexing and at 30× without multiplexing to show that index hopping and bias towards the reference allele due to alignment had little impact on genotype calls. However, pruning of alternative haplotypes supported by a number of reads below a predefined threshold, which is a default and desired step of some variant callers for removing potential sequencing errors in high-coverage data, introduced an unexpected bias towards the reference allele when applied to low-coverage sequence data. This bias reduced best-guess genotype concordance of low-coverage sequence data by 19.0 absolute percentage points. Conclusions We propose a simple pipeline to correct the preferential bias towards the reference allele that can occur during variant discovery and we recommend that users of low-coverage sequence data be wary of unexpected biases that may be produced by bioinformatic tools that were designed for high-coverage sequence data
    corecore